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A B S T R A C T

Increasing evidence links disorders of consciousness (DOC) with disruptions in functional connectivity between
distant brain areas. However, to which extent the balance of brain network segregation and integration is
modified in DOC patients remains unclear. Using high-density electroencephalography (EEG), the objective of
our study was to characterize the local and global topological changes of DOC patients' functional brain net-
works.

Resting state high-density-EEG data were collected and analyzed from 82 participants: 61 DOC patients re-
covering from coma with various levels of consciousness (EMCS (n=6), MCS+ (n=29), MCS- (n=17) and
UWS (n=9)), and 21 healthy subjects (i.e., controls). Functional brain networks in five different EEG frequency
bands and the broadband signal were estimated using an EEG connectivity approach at the source level. Graph
theory-based analyses were used to evaluate their relationship with decreasing levels of consciousness as well as
group differences between healthy volunteers and DOC patient groups.

Results showed that networks in DOC patients are characterized by impaired global information processing
(network integration) and increased local information processing (network segregation) as compared to controls.
The large-scale functional brain networks had integration decreasing with lower level of consciousness.

1. Introduction

Severe brain damages may lead to various disorders of conscious-
ness (DOC; (Giacino et al., 2014)). Emerging evidence associates DOC
with alterations in functional and/or structural brain networks, mainly
those sustaining arousal and awareness (Amico et al., 2017; Annen
et al., 2016; Annen et al., 2018; Bodien et al., 2017; Boly et al., 2012;
Fernández-Espejo et al., 2012; Owen et al., 2009). Therefore, network-
based EEG methods enabling the identification of these pathological
alterations in brain networks are valuable. More specifically, new
‘neuromarkers’ able to identify network characteristics associated with
DOC could improve diagnosis and optimize patient-specific clinical
follow-up. This is important, since DOC encompass a variety of con-
sciousness states, such as the unresponsive wakefulness syndrome

(UWS; wakefulness with only reflex movements) (Laureys et al., 2010;
Monti et al., 2010), the minimally conscious state (MCS, reproducible
and purposeful behavior; divided in MCS- and MCS+, the latter char-
acterized by the presence of response to command, intentional com-
munication and/or intelligible verbalization) (Giacino et al., 2002), and
emergence from the minimally conscious state (EMCS, characterized by
recovered functional communication and/or object use) (Giacino et al.,
2002).

These different clinical diagnoses are defined by functional bound-
aries as measured with behavior, preferably using the Coma Recovery
Scale-Revised (CRS-R; (Giacino et al., 2004)). However, there is a
transition zone between the different states that marks the recovery
from UWS to MCS or higher awareness levels (Giacino et al., 2009;
Schiff and Fins, 2016), emphasizing that DOC are not a static
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phenomenon but could be conceptualized as a continuum, with patients
sometimes moving from UWS to MCS and back in a short time span.
Indeed, diagnosis is most reliable in chronic patients after at least 5
behavioral assessments, accounting for arousal and awareness fluctua-
tions (Wannez et al., 2017). Clinical diagnosis based on behavior is
furthermore limited by misdiagnosis due to, for example, physical
limitations such as spasticity, language impairments, and medical
complications. UWS patients in which the neuroimaging shows results
in line with the ability to sustain consciousness are not rare and may
represent about 30% of the DOC population (Stender et al., 2014). This
category of patients are termed non-behavioral MCS (MCS*, (Gosseries
et al., 2014) or Cognitive Motor Dissociation (CMD, (Schiff, 2015). Even
though clinical diagnosis based on these functional boundaries is im-
portant for prognosis and treatment (e.g., (Thibaut et al., 2014)),
overlapping cognitive function as measured with neuroimaging/neu-
rophysiology between diagnostic entities is expected to some extent.

Electroencephalography (EEG) records cortical electrical activity
from scalp electrodes, and has major assets due to its non-invasiveness,
easiness-of-use and clinical accessibility. Previous EEG network-based
studies in the context of DOC have been performed at the scalp level
(Chennu et al., 2014; Chennu et al., 2017) with satisfactory accuracies
in classifying UWS and MCS patients (Chennu et al., 2017; Engemann
et al., 2018; Sitt et al., 2014). However, the biological interpretation of
corresponding network alterations is not straightforward, since scalp
EEG signals are corrupted by the volume conduction due to the head
electrical conduction properties (Brunner et al., 2016; Van de Steen
et al., 2016). Several studies have indeed reported the limitations of
computing connectivity at the EEG scalp level (see for review (Hassan
and Wendling, 2018; Schoffelen and Gross, 2009) even if this can be
compensated by methods removing zero-lag components, (Chennu
et al., 2017; Vinck et al., 2011). More essentially, scalp analysis does
not allow making inferences about interacting brain regions. A poten-
tial solution is an emerging technique called “MEG/EEG source con-
nectivity” (De Pasquale et al., 2010; Hassan et al., 2015; Hipp et al.,
2012; Kabbara et al., 2017; Kabbara et al., 2018; Mehrkanoon et al.,
2014; Mheich et al., 2017; Rizkallah et al., 2018), which reduces the
aforementioned volume conduction. It is also conceptually attractive
since networks can be directly identified at the cortical level with a high
time/space resolution (for more details, see (Hassan and Wendling,
2018). Since conscious processing involves synchronization of locally
generated oscillations between remote groups of neurons (Melloni
et al., 2007), high-density EEG functional connectivity at the source
level is a promising approach to track such synchronizations. In con-
trast, the time resolution of most fMRI techniques does not enable the
detection of fast neural oscillations (e.g., 30–80 Hz range), which are
involved in conscious perception and information transfer between
regions (Fries, 2015), limiting the possibilities to study synchroniza-
tion-based communication with fMRI.

Over the past decade, graph theory has become a well-established
approach in the field of network neuroscience (Fornito et al., 2016). It
provides complementary information to source connectivity methods
by quantifying functional and/or statistical aspects of identified brain
networks. Among the few studies using graph theory in DOC, a common
finding is the identification of disturbances in overall network in-
tegration, usually computed by modularity-based approaches (Chennu
et al., 2017; Crone et al., 2014; Demertzi et al., 2015). However, to
what extent the balance between EEG frequency-dependent network
segregation (local information processing) and integration (global in-
formation processing) is altered in DOC remains elusive, which is the
main objective of this paper. More specifically, large-scale commu-
nication (integration) between brain regions appears to involve rather
low-frequency oscillations such as the theta rhythm, while local in-
formation processing rather involves high-frequency oscillations such
as the gamma rhythm (Lisman and Jensen, 2013) for a detailed review).
Here, we tackle the issue of the integration/segregation balance and its
relationship with low/high frequency neuronal oscillations in patients

with DOC. In this study, we combined EEG source connectivity with
graph theory, applied to resting-state high-density-EEG (256 channels)
data recorded from patients with DOC whose diagnosis has been es-
tablished based on the Coma Recovery Scale-Revised (CRS-R; (Giacino
et al., 2004)).

Our specific objectives were to i) track alterations in objective
functional connectivity measures reflecting cortical brain networks as a
function of clinical consciousness levels (ranging from patients diag-
nosed as unresponsive, through those who have emerged from mini-
mally conscious and healthy control subjects) and ii) identify the brain
regions that were differentially involved between groups by means of
direct group comparisons.

2. Materials and methods

2.1. Participants

Sixty-one patients (24 females, mean age 40 ± 14.5) and twenty-
one healthy subjects (i.e. controls; 8 females, mean age 41 years±
15.4) were included in this study. Patients were diagnosed as EMCS
(n=6), MCS+ (n=29), MCS- (n=17) and UWS (n=9). Etiology
was traumatic in 28 patients and non-traumatic in 33 patients. Time
since injury was on average three years and ranged from nine days to
19 years. The Ethics Committee of the University Hospital of Liège
approved this study. All healthy subjects and patients' legal surrogates
gave informed written consent for participation to the study.

Patients' level of consciousness was assessed using the CRS-R
(Giacino et al., 2004) repeated at least 5 times to minimize clinical
misdiagnosis (Wannez et al., 2017). Patient's diagnosis was based on
the best behaviors/highest item obtained over the repeated CRS-R as-
sessments during the week of hospitalization. The following demo-
graphic information (listed in Supplementary Table T1) was also col-
lected for each patient: age, gender, traumatic or non-traumatic
etiologies and best clinical diagnosis based on the CRS-R assessments.

2.2. Data acquisition and preprocessing

The full pipeline of the analysis is described in Fig. 1. A high-density
EEG system (EGI, Electrical Geodesic Inc., 256 electrodes applied with a
saline solution) was used to record resting state brain activity with a
sampling rate of either 250 Hz or 500 Hz (which were down-sampled to
250 Hz for consistency). During data collection, patients were awake
and had their eyes open (an examiner was present during the whole
acquisition to ensure that the patients remained awake and eyes open in
a silent and dark room, tactile or auditory stimuli were administered if
patients were closing their eyes).

EEG data from 178 channels on the scalp were retained for analysis;
neck, forehead and cheeks channels were discarded, since they are the
most prone to muscular artifacts, as previously described (Hassan et al.,
2016; Kabbara et al., 2017). EEG signals were filtered between 0.3 and
45 Hz and then re-referenced using the average reference (Tadel et al.,
2011). Overall, out of 115 patients' recordings, we retained 61 datasets
for further processing and analysis. The other recordings were excluded
due to excessive contamination by artifacts (e.g., muscle artifacts).

All EEG epochs were visually inspected before Independent
Components Analysis (ICA) was performed to remove eye blinking ar-
tifacts using EEGLAB (Delorme and Makeig, 2004). Electrodes with
poor signal quality were interpolated in Brainstorm using signals re-
corded by surrounding electrodes (spherical spline interpolating
method, with a maximal distance between neighbors of 5 cm). Seg-
ments that have> 20 electrodes interpolated have been excluded from
the analysis. The MRI template “Colin27” (Holmes et al., 1998) and
EEG signals were co-registered through identification of the same
anatomical landmarks (left and right tragus and nasion) using Brain-
storm (without digitalizing the electrodes). The lead field matrix was
then computed for a cortical mesh of 15,000 vertices using openMEEG
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(Gramfort et al., 2010). The noise covariance matrix was calculated
using a long segment of noisy EEG data at rest, as recommended in
(Tadel et al., 2011). An atlas-based segmentation approach was used to
project EEGs onto an anatomical framework consisting of 221 cortical
regions identified by means of re-segmenting the Desikan-Killiany
(Desikan et al., 2006) atlas using Freesurfer (Fischl, 2012). Time series
within one region of interest were averaged after flipping the sign of
sources with negative potentials.

2.3. Brain networks construction

Functional brain networks were constructed using the “high-den-
sity-EEG source connectivity” method (Hassan et al., 2014) which
quantifies the functional connectivity between regional time series at

the source level. The EEG source connectivity method aims to bridge
functional network at the level of cortical sources and the recorded
scalp EEG signals, which involves solving an inverse problem (from the
EEG to the sources). This is an ill-posed problem since we have a
number of electrodes that is greatly inferior to the number of possible
sources. Therefore, several physical (position and orientation of the
sources) mathematical (amplitude) constraints have to be formulated to
solve the inverse problem. Here, regarding the position of the sources,
we used a segmented MRI image (template brain available in Brain-
storm package), with the position of each source being a vertex on the
brain mesh. Regarding the orientation of the sources, it was set as
normal to the cortical surface for each vertex, which is plausible since
the origin of EEG signals occurs from post-synaptic currents at the level
of pyramidal cells, and that pyramidal cells are aligned “en palissade”
and are normal to the cortical surface. In terms of mathematical con-
straints, we used the weighted minimum norm estimate (wMNE), which
aims to identify sources with the smallest energy. For further details,
see (Hassan and Wendling, 2018).

The EEG source connectivity method includes two main steps: i)
reconstruction of the cortical regions (brain sources) temporal dy-
namics from the scalp EEG signals and ii) measurement of the func-
tional connectivity between reconstructed regional time series. wMNE
was used to reconstruct the cortical sources by introducing a weighting
matrix:

= +S I(G W G λ ) G W XwMNE
T

X
‐1 T

X

where the diagonal matrix Wx is built from the lead field matrix G with
non-zero terms inversely proportional to the norm of the lead field
vectors. The regularization parameter λ is computed relatively to the
signal to noise ratio (λ=0.1 in our analysis). Reconstructed regional
time series were filtered in six different frequency bands: Delta
(1–3 Hz), Theta (3–7 Hz), Alpha (7–13 Hz), Beta (14–25 Hz), Gamma
(30–45 Hz) and broadband (1–45 Hz). Then, we computed the func-
tional connectivity between the reconstructed regional time series in
each frequency band, using the phase locking value (PLV) (Lachaux
et al., 1999) defined as:

∫=
−

+ −e dτPLV(t) 1
δ

j
t δ/2

t δ/2 (φ (t) φ (t))y x

where φy(t) and φx(t) are the phases of the signals x and y at time t
extracted using the Hilbert transform. δ denotes the size of the window
in which PLV is calculated. PLV values range between 0 (no phase
locking) and 1 (full synchrony). Detailed methodological description
and technical details of the high-density EEG source connectivity
method as computed in this paper can be found in (Hassan et al., 2015).

We used a sliding window technique for each epoch to compute the
dynamic functional connectivity matrices. The smallest window length
recommended by (Lachaux et al., 2000) was used, equal to number of cycles

central frequency
where the number of cycles at the given frequency band is equal to six.
Finally, we adopted a 10% (of the highest PLV values) threshold to
retain only the ‘true’ functional connections, and remaining PLV values
were set to zero.

2.4. Multi-slice networks modularity

Thresholded weighted connectivity matrices were split into time-
varying modules using multi-slice networks modularity (Bassett et al.,
2013; Mucha et al., 2010). This algorithm consists of linking nodes
across network slices (time windows) via a coupling parameter before
applying the modularity maximization method (Bassett et al., 2011;
Bassett et al., 2015): each node is only connected to itself in the ad-
jacent layers. This produces, for every brain region at every time
window, a modular assignment reflecting the module allegiance.

Due to a degeneracy problem in the modularity algorithms (Good
et al., 2010), i.e. running the same algorithm on the same connectivity

Fig. 1. Data processing pipeline. (A) Database: Patients were diagnosed ac-
cording to repeated assessments with the CRS-R into EMCS, MCS+, MCS- and
UWS. The demographic details are listed in Supplementary Table T1. (B) EEG
acquisition and preprocessing: High-density-EEGs were recorded using 256
electrodes during resting-state (eyes open, in the dark) for 20 to 30min. Signals
were then filtered between 0.3 and 45 Hz and segmented into 40 s epochs.
Independent Component Analysis (ICA) was applied and bad channels were
interpolated. Finally, the first five clean epochs were kept for analysis. (C)
Source reconstruction: EEG cortical sources were estimated using the weighted
norm estimation method (wMNE). This step was followed by a projection of the
source signals on an atlas based on Desikan-killiany and Hagmann atlases, using
a template brain. Reconstructed regional time series were filtered in six dif-
ferent frequency bands: Delta (1–3 Hz), Theta (3–7 Hz), Alpha (7–13 Hz), Beta
(14–25 Hz), Gamma (30–45 Hz) and Broadband (1–45 Hz). (D) Dynamic func-
tional networks: Functional connectivity matrices were computed using the
phase locking value (PLV) calculated using a sliding window technique.
Networks were then characterized by their clustering coefficient (segregation)
and participation coefficient (integration).
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matrix can result in slightly different outputs, the multilayer network
modularity was computed 100 times and a 221 by 221 association
matrix was generated (Bassett et al., 2013; Fornito et al., 2016;
Lancichinetti and Fortunato, 2012). The association matrix elements
indicate the number of times each node was assigned to the same
module with the other nodes across these 100 partitions. The associa-
tion matrix was then compared to a null-model generated from 100
random permutation from the originals partitions, and only significant
values (p < .05) were kept (Bassett et al., 2011). Finally, the Louvain
algorithm (Blondel et al., 2008) was applied on the association matrix
to cluster the network, resulting in a partition that is the most re-
presentative of network modularity.

2.5. Network measures

Our main intent was to explore two important properties related to

information processing in the human brain network:

- Network segregation, which reflects local information processing. For
this reason, the clustering coefficient ‘C' was computed and con-
sidered as a direct measure of network segregation (Bullmore and
Sporns, 2009). In brief, C represents how close a node's neighbors
tend to cluster together (Watts and Strogatz, 1998).

=
− ′

C t
k k

2
( 1)i

i

i i

where ti denotes the number of triangles around the node i and ki re-
presents the number of edges connected to the node i. This coefficient is
the proportion of connections among a node's neighbors, divided by the
number of connections that could possibly exist between them, which is
0 if no connections exist and 1 if all neighbors are connected. The
average clustering coefficient of a network was calculated for each
epoch by averaging the clustering coefficient values over all the 221

Fig. 2. Brain segregation and integration in control
subjects and patients with decreasing levels of con-
sciousness due to severe brain injury. A. The clus-
tering (segregation) and B. participation (integra-
tion) coefficients are presented for all groups in delta
(1–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), beta
(14–25 Hz), gamma (30–45 Hz) and broad band
(3–45 Hz). Values were averaged over all brain re-
gions. Individual patient metrics are shown in the
scatter plot next to the box plot. Increase of clus-
tering coefficient values and decrease of participa-
tion coefficient values with decreased consciousness
level was found within all frequency bands. A
Wilcoxon test was applied between groups. * denotes
p < .05 without correction and ** with correction.
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regions.

- Network integration, which reflects global information processing.
The participation coefficient was computed to measure the diversity
of a node inter-modular connections (Guimera and Amaral, 2005).

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠=

P k
k

1i
s

is

i1

N 2m

where Nm is the number of modules, kis is the number of edges between
node i and other nodes in module s, and ki is the total degree of node i.
The participation coefficient of a node is close to 1 if its links are uni-
formly distributed among all the modules and 0 if all of its links are
within its own module. Nodes with high participation coefficients in-
terconnect multiple modules together, and hence can be seen con-
nectivity hubs. The average participation coefficient of a network is
calculated for each epoch by averaging the participation coefficient
values over all 221 regions.

2.6. Statistical analysis

The Jonckheere-Terpstra (JT) test (Jonckheere, 1954; Terpstra,
1952), a non-parametric and rank-based trend test, was used to test the
trends of network metrics as a function of the continuum of clinical
levels of consciousness. Regional-level differences were analyzed be-
tween the groups, with the exception of the EMCS group due to its very
small sample size (N=6).

To statistically assess whether group differences between brain in-
tegration and segregation and clinical levels of consciousness exist
(healthy volunteers versus all patient groups and between patient
groups) we used the Mann-Whitney U Test. In order to address the fa-
mily-wise error rate, statistical tests were corrected for multiple com-
parisons using the Bonferroni method. In the global-wise analysis,
pbonf = 0.05/Ng, where Ng=5 denotes the number of groups. In the
region-wise analysis, pbonf = 0.05/Nr, where Nr= 221 denotes the
number of regions of interest.

Data availability. The data used in the present study is available
upon reasonable request.

3. Results

There were no differences between patients and controls in terms of
gender (p= .6) or age (p= .2) and between patient groups for time
since injury (p= .12).

3.1. Network segregation/integration as a function of clinical levels of
consciousness

The results in Fig. 2A illustrate a trend towards increased clustering
coefficient values with decreased consciousness level in the delta (JT
trend statistic= 4.2, p < .0001), theta (JT trend statistic= 3.67,
p= .0001), beta (JT trend statistic= 2.24, p= .01) and gamma (JT
trend statistic= 1.66, p= .04) bands. In the delta band, controls had
lower clustering coefficients than patients in MCS+ (p= .0007,
U=133, r= 0.47, corrected), MCS- (p < .0001, U=43, r= 0.62,
corrected) and UWS (p= .01, U=39, r= 0.485 corrected). In the theta
band, the clustering coefficient was also lower in controls as compared
to MCS+ (p= .001, U= 146, r= 0.43, corrected), MCS- (p= .0001,
U=47, r= 0.62, corrected) and UWS (p= .01, U= 38, r= 0.46, cor-
rected).

The results in Fig. 2B illustrate decreased participation coefficient
values with decreased consciousness level in the delta (JT trend sta-
tistic= 4.5, p < .0001), theta (JT trend statistic= 4.9, p < .0001),
beta (JT trend statistic= 2.2, p= .01), gamma (JT trend sta-
tistic= 3.9, p < .0001) and broad bands (JT trend statistic= 2.7,
p= .0034). In the delta band, the participation coefficient was higher

in controls as compared to MCS+ (p= .0005, U=480, r= 0.48, cor-
rected), MCS- (p= .0007, U= 294, r= 0.54, corrected) and UWS
(p= .005, U=156, r= 0.5 corrected).

In the theta band, the participation coefficient was higher in con-
trols as compared to MCS+ (p= .003, U= 457, r= 0.42, corrected),
MCS- (p < .0001, U= 317, r= 0.65, corrected), and UWS (p= .003,
U= 159, r= 0.52, corrected). The participation coefficient in the theta
band was also higher in EMCS as compared to MCS- (p= .007, U= 90,
r= 0.56, corrected).

In the alpha band, the participation coefficient showed lower values
in controls than in EMCS (p= .009, U= 18, r= 0.49, corrected).
However, in the gamma band, the participation coefficient showed a
decrease in MCS+ patients (p= .0002, U=492, r= 0.52, corrected),
MCS- patients (p= .002, U=282, r= 0.49, corrected), and UWS pa-
tients (p= .01, U= 150, r= 0.45, corrected) as compared to controls.
Additionally, we performed the JT tests excluding the controls to con-
firm that our results were not solely driven by this group, and all trends
remained significant in theta, delta and gamma bands.

3.2. Regional-wise differences between groups

We present below results for the participation coefficient in the
theta (Fig. 3) and gamma (Fig. 4) bands.

All patient groups had brain regions with significantly (Bonferroni-
corrected) decreased integration as compared to the control group and
no regions with higher integration values were identified. As expected,
a wider network was involved in the decreased integration in MCS-
patients than in MCS+ patients, as compared to the controls. However,
the differences between the control group and the UWS group were
much less pronounced than between the control group and the MCS-
group, which might originate from the small sample size of the UWS
group (N=9). Regions that resisted the Bonferroni correction were
mainly located in the left precuneus and left/right orbitofrontal area for
the comparison of controls>UWS (p < .0002). A large number of
brain regions had decreased integration in the MCS- group as compared
to the control group (exhaustive list in Supplementary Material), in-
cluding the right orbitofrontal (p < .0002), left inferior temporal
(p < .0002) and left superior parietal (p < .0002). The left precuneus,
left/right orbitofrontal, left/right fusiform, left superior temporal, right
precentral (p < .0002) showed a higher participation coefficient in the
theta band for controls than MCS+ patients.

The results regarding the participation coefficient for the re-
constructed functional networks in the gamma band are presented in
Fig. 4. No significant differences were observed between patient groups.
The comparison between control and MCS- groups revealed a decrease
in participation coefficient in MCS- patients mainly in the left fusiform,
left postcentral and right dorso-lateral frontal cortex (p < .0002). A
much wider network of regions had a decreased participation coeffi-
cient between control and MCS+ groups, mainly located in the left/
right lateral frontal cortex and right central cortex (p < .0002). Again,
as in the case of the theta band, the UWS group had a lower number of
regions with decreased integration than MCS groups, as compared to
the control group. The exact labels of the regions with a significant
difference in the participation coefficient (in theta and gamma bands),
along with Bonferroni corrections, are available in the Supplementary
Materials Tables T2 and T3.

4. Discussion

Emerging evidence supports that DOC are characterized by disrup-
tions of brain networks that sustain arousal and awareness, as reviewed
by (Bodien et al., 2017). Therefore, identifying alterations in whole-
brain functional networks from non-invasive techniques, along with
their relationships with varying consciousness levels, is a crucial and
challenging issue. In this study, based on scalp high-density EEG re-
cordings, we identified alterations in resting-state functional networks
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associated with DOC. Interestingly, a gradual reconfiguration of func-
tional brain networks was observed in line with the consciousness level.
Our findings also pointed at a decrease in brain network integration
(communication between distant brain modules) and an increase in
brain network segregation (communication within the same brain
module) in DOC patients as compared to healthy controls. A decrease in
brain integration with decreasing consciousness is especially relevant
from a fundamental point of view. Indeed, one of the most prevalent
theories, namely the Integrated Information Theory (IIT), describes the
generation of conscious experiences as a result of a sufficiently complex
integration of information between brain regions (Tononi, 2004;
Tononi et al., 2016).

Although using EEG to identify markers in DOC is not novel in itself.
The originality of the present work is that, as opposed to most previous
studies, functional brain networks were estimated at the cortical level
using high-density EEG data, which enabled making inferences about
interacting regions. For example, we explored alterations of functional
brain networks in two key aspects of human brain information pro-
cessing: segregation and integration. These findings indicate that
functional connectivity between distant areas (network integration)
decreases with decreased level of consciousness.

4.1. Low network integration in DOC patients

The main finding of the present study is a decreasing trend in the
integration of resting-state functional brain networks with the con-
sciousness level. This finding is consistent with the conclusions from
several studies (Chennu et al., 2017; Crone et al., 2014), including those
investigating transcranial magnetic stimulation (TMS)-evoked EEG re-
sponses in patients with DOC (Casali et al., 2013; Casarotto et al.,
2016). An important contribution of the present study is that, as op-
posed to complexity-based indexes computing using TMS-evoked re-
sponses, the computation of integration is based only on resting-state
functional networks. It does not require any brain stimulation hard-
ware, which could have a potential clinical and practical value, even if
in this study we were not able to identify a difference between MCS and
UWS groups.

Two common anatomical regions were identified with decreased
integration when comparing the control group with any of the patient
groups. The first is the left precuneus, a key hub structure from the
default mode network (DMN). The precuneus is engaged in self-related
processing (Zhang and Chiang-shan, 2012), episodic memory (Ren
et al., 2018), awareness and conscious information processing (Kjaer
et al., 2001; Long et al., 2016; Vogt and Laureys, 2005). Also, it has

Fig. 3. Between-group comparison of regional decreases in theta band integration. Brain regions that have significantly lower integration in UWS, MCS- and MCS+
as compared to the control group and in MCS- patients compared to MCS+ patients are presented. Brain regions having a p-value lower than 0.05/221= 0.0002
(Bonferroni-corrected) are presented in the red color, regions with 0.0002 < p < .0004 are presented in dark orange, if 0.0004 < p < .0008 the light orange color
was used, for 0.0008 < p < .01 the yellow color was used and if p > .01 the regions are presented in white.
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been shown that patients with UWS having residual functional con-
nectivity of DMN and external awareness networks might be mis-
diagnosed, since such functional connectivity is an indicator of covert
consciousness (Naro et al., 2017). Second a part of the left orbitofrontal
cortex is affected, this region is believed to encode predicted values of
potential rewards (Gottfried et al., 2003). It is also thought to play a
major role in the evaluation of specific behavioral outcomes to influ-
ence action selection, depending on emotional and sensory contexts
(Rudebeck and Murray, 2014) and in pain perception (Naro et al.,
2015). As mentioned previously, the network of regions with decreased
integration in the theta band is wider in MCS- patients than in MCS+
patients, which is consistent with their respective clinical CRS-R diag-
nosis. It remains unclear why the UWS group had fewer involved brain
regions with decreased integration when compared to controls than the
MCS+ and MCS- groups.

Two main factors may explain the absence of group differences
between UWS and MCS patients. First, the limited sample size (N=9)
of the UWS group, which decreases statistical power for the group
comparison, especially given the high heterogeneity in DOC patients'
structural and functional brain lesions. Second, clinical diagnoses might
represent overlapping brain functioning (Schiff and Fins, 2016). In line
with this notion, previous studies identifying functional and structural
differences between patient groups have sometimes failed to identify
group differences between UWS and MCS, but found a difference be-
tween DOC and healthy controls' groups (e.g., (Demertzi et al., 2014; Di
Perri et al., 2016)). The identification of group differences still remains
a key objective for clinical applications and should be addressed in
larger multicenter studies.

Regarding the increased network segregation, results were less
pronounced between groups as compared to network integration. This
could explain discrepancies between previous studies, some referring to
an increase in network segregation (using the clustering coefficient for
instance) (Chennu et al., 2014), while others reported the opposite
(Chennu et al., 2017). It is worth mentioning that, in our study and the

one conducted by (Chennu et al., 2017), segregation results have op-
posite trends. A possible explanation is that the study by (Chennu et al.,
2017) performed functional connectivity in the electrode space, while
the present study functional connectivity was computed in the source
space. The relationship between scalp versus source space functional
connectivity using EEG is indeed still an open question in the EEG
community. A recent study that compared scalp- and source- re-
constructed networks concluded that, not only the magnitude of net-
work measures may change from scalp to source (EEG) analysis, but
even the direction of the effect may be the opposite (still depending on
the functional connectivity metric) between both methods (Lai et al.,
2018). Therefore, even if further efforts need to be made in the com-
parison between source- and scalp- EEG-based networks, such dis-
crepancies can be explained by the method of network reconstruction.

4.2. Methodological considerations and limitations

In this study, a proportional threshold of 10% was used to eliminate
spurious connections from connectivity matrices. We chose using a
proportional threshold instead of an absolute threshold to warrant
equal density between groups, as recommended by (van den Heuvel
et al., 2017). Moreover, Garisson et al. (Garrison et al., 2015) reported
that network measures are stable across proportional thresholds, as
opposed to absolute thresholds. A variety of thresholding methods are
available, but no method is free of bias, it is therefore recommended to
perform studies across different values of thresholds to ensure that
findings are robust against this methodological factor. Therefore, we
tested several threshold values, which did not have any impact on the
main conclusions of the study, as illustrated in Supplementary Figs. S1
and S2.

Second, the muscle artifact in the gamma band is a serious metho-
dological issue. Here, we have reduced the effect of the muscle artifacts
by selecting only 178 channels for analysis (neck, forehead and cheeks
channels were discarded, since they are the most prone to muscular

Fig. 4. Between-group comparison of regional de-
creases in gamma band integration. Brain regions
that have significantly lower integration in UWS,
MCS- and MCS+ as compared to the control group
are presented. Brain regions having a p-value lower
than 0.05/221=0.0002 (Bonferroni-corrected) are
presented in the red color, regions with
0.0002 < p < .0004 are presented in dark orange,
if 0.0004 < p < .0008 the light orange color was
used, for 0.0008 < p < .01 the yellow color was
used and if p > .01 the regions are presented in
white. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)
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artifacts). Data with excessive movement artifact were removed by in-
terpolating abnormally noisy channels and removing epochs with>20
interpolated electrodes.

Third, the choice of wMNE/PLV was supported by two comparative
analyses performed in (Hassan et al., 2014; Hassan et al., 2016) that
reported the superiority of wMNE/PLV over other combinations of five
inverse algorithms and five connectivity measures. Briefly, in (Hassan
et al., 2016), the network identified by each inverse/connectivity
combination used to identify cortical brain networks from scalp EEG
was compared to a simulated network (ground truth). The combination
that showed the highest similarity between the scalp-EEG-based net-
work and reference network (using a network similarity algorithm) was
considered as the optimal combination, which was found to be wMNE/
PLV.

A persistent problem in the field of MEG/EEG source functional
connectivity is the volume conduction effect (Brookes et al., 2012).
Source level connectivity analysis has been shown to diminish the vo-
lume conduction problem, since connectivity metrics are estimated
between ‘local’ regional time-series. However, these ‘mixing effects’ can
also arise in the cortical source space, and ghost couplings can be
produced by some connectivity methods when applied to mixed signals.
To tackle this issue, a number of methods were developed mainly
centered on the zero-lag correlation rejection. Un-mixing methods,
called ‘leakage correction’, have been reported to force the re-
constructed signals to have zero cross-correlation at lag zero (Colclough
et al., 2015). Although handling this problem -theoretically- improves
interpretation, a recent study showed that the estimated connectivity
can be false and significantly different from the true connectivity (Palva
et al., 2018; Pascual-Marqui et al., 2017).

In the present study, a template source space was used, instead of a
subject-specific one. This might be problematic in severely brain-in-
jured patients, since different brain regions are injured between pa-
tients. In the case of healthy subjects, (Douw et al., 2018) found that co-
registration with a template brain yielded largely consistent con-
nectivity and network estimates as compared to native MRI. However,
in the case of severe brain damage, it remains unknown how a template
instead of a native MRI co-registration affects results and their inter-
pretability.

Although the significant trends in network integration decrease with
the level of consciousness, the current approach failed to identify a
significant difference, at the group level, between MCS and UWS
groups. This absence of difference represents, at this stage, a limitation
in terms of potential clinical translation. That being said, this represents
a challenge and an opportunity to develop further EEG network-based
markers of the consciousness level based solely on resting-state re-
cordings, to improve the diagnosis of DOC patients using a limited and
accessible hardware.
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